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The challenge of personalized medicine is to predict the causal effect of a treatment on patient, given a number
of clinically relevant patient features. This task requires a flexible model that can integrate heterogeneous data,
be easily interpreted by domain experts, and provide a meaningful quantification of the uncertainty in the
prediction. In this submission we describe such a tool in the form of a multilevel Bayesian model for precision
oncology, implemented in the probabilistic programming language, Stan, and we discuss the application of
the model to brain cancer patient treatment outcomes.

1 INTRODUCTION
The problem of precision oncology – that is, precision medicine in cases of advanced cancer – is this:
Given a description of a specific patient’s state, including their history, and all available knowledge
and data, choose the treatment that is most likely to have the greatest utility with respect to this
patient’s treatment goals. We here take the patient’s goals to be prolonging of expected time to
disease progression or death, as well as avoiding serious adverse events.
Physicians engaged in precision oncology must integrate an overwhelming amount of infor-

mation from publications, and from their own experience. As of the end of 2019, PubMed reports
19,748 publications matching the term “breast cancer” in the past year alone, and the same search
for open, recruiting studies in ClinicalTrials.gov returns 1,937 studies. Oncologists fighting
less common cancers are in potentially a worse situation; Instead of being overwhelmed, they have
only a few relevant publications, and may have seen only a small number of similar cases.
In this submission we describe a model whose purpose is to help oncologist predict outcomes

for particular patients under different treatment regimens. Our goal for the model is to condition it
on individual patient outcomes and/or summary statistics from clinical trials. Once conditioned,
the model can predict outcomes for new patients under different treatment choices and provide a
measure of the uncertainty of these predictions. The model’s structure bears an understandable
relationship to the domain, and to the types of inputs and outputs oncologists would expect. This
may help users of the model to understand how the predictions, and uncertainty, are derived.
We implement the model in the probabilistic programming language, Stan [Carpenter et al. 2017;
Gelman et al. 2015].

2 DATA
We consider two types of patient outcome data that serve as the output of the generative model:

(1) Tumor load (TL), a measure or proxy of the volume of a patient’s tumor
(2) Progression-free survival (PFS), the length of time after starting treatment that a patient lives

without their disease getting worse
Tumor load is a longitudinal outcome, usually measured in regular cadences, and so for each

patient we have a time series of TL measurements. For progression-free survival, we have a survival
time and a binary indication of whether the failure event (disease progression or death) was
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observed by that time or was right-censored. There are a number of motivations for modeling these
types of patient outcomes.

Tumor load, alone is an imperfect biomarker for survival, but when tumor location is included,
this becomes a strong predictor for survival and other outcomes that are obviously important to
patients, such as pain and other types of discomfort and functionally disabling symptoms that all
reduce quality of life. Similarly, tumor load when considered as rate of change in tumor volume,
when controlled for location, often provides a good measure of treatment activity. In most cases,
when the tumor growth rate is reduced or reversed in temporal association with treatment, that is
evidence of a response to the treatment.

Time-to-progression is a common outcome in clinical trials, which provides some interpretability
of response measures in relation to clinical trials. Importantly time-to-progression does not always
correlate with overall survival, especially in clinical trials where crossovers and subsequent therapies
make post-progression analysis and interpretability more difficult. Another advantage of this
model is that patients are observed over multiple lines of therapy in which prior lines of therapy
and response become additional patient features. This facilitates the exploration of the relative
contribution of different lines and interaction between lines of therapy to survival.
To predict patient outcomes, we use make use of two kinds of feature data: treatments and

biomarkers. Patient can take a number of possible treatments at measured times, and so the TL
time series data can be converted to a time offset from a start time of the first treatment. For this
context we consider a treatment to be a monotherapy, with combinations of therapies represented
as interaction terms in the treatment indicator vector, 𝒙tx. Each patient also has a set of biomarkers,
𝒙bm, that can be used to predict the utility of various treatments. Here we are using a very general
definition of the term biomarker to include any clinically relevant features (genetic mutations, age,
sex, tumor location, previous treatments, etc.). In principle these biomarkers can be time-dependent
and continuous, but here we consider the simplification of static biomarkers with binary values
(present or not present). For treatments that are assumed to have a direct causal interaction with
a biomarker (e.g., a therapy targeted for a particular genetic mutation), we include an additional
treatment-biomarker interaction term, 𝒙int which is equal to one for patients with that biomarker
who were given the associated treatment.

3 MODEL
Many studies [e.g., Adrion and Mansmann 2012; Brown et al. 2005; Henderson 2000; Hickey et al.
2018; Król et al. 2018; Meller et al. 2019; Rizopoulos et al. 2014] have proposed and evaluated
flexible longitudinal outcomes models, including joint models with time-to-event data. Here we
model each type of outcome as a multilevel generalized linear response [Gelman and Hill 2007].
Population-level slope and intercept parameters are denoted as 𝜷 , while patient-level effects are
denoted as 𝒖𝑖 . In the terminology of mixed models, these are referred to as fixed and random effects,
respectively. A graphical summary of the generative model is shown in Figure 1.

3.1 Tumor load sub-model
For the 𝑖-th patient, the slope of the tumor load linear response is given by

𝛿TL𝑖 = 𝒙TL
𝑖 · 𝜷TL + 𝒛TL𝑖 · 𝒖TL1𝑖 (1)

where 𝒙TL
𝑖 = (1, 𝒙bm𝑖

, 𝒙tx𝑖 , 𝒙int𝑖 ) is the vector of predictors, 𝒛TL𝑖 is a subset of those predictors used
for modeling patient-level effects, 𝜷TL is the vector of population-level effect sizes associated to the
predictors, and 𝒖TL1𝑖 are the patient-level slopes. For the 𝑗-th time series data point from the 𝑖-th
patient, the mean linear response for tumor load is 𝜂TL𝑖 𝑗 = (𝛽TL0 + 𝑢TL

0𝑖 ) + 𝛿TL𝑖 𝑡TL𝑖 𝑗 where 𝛽TL0 is the
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Fig. 1. Directed acyclic graph showing the causal assumptions in the model. Nodes with circles represent
parameters whose values follow distributions conditioned on the values of parent nodes. Nodes with boxes
represent parameters whose values are deterministically set by the value of parent nodes. Nodes colored
blue indicate patient feature data (parallelogram) and patient outcome data (circles). Green nodes indicate
population-level effect size parameters. Yellow nodes indicate sources of noise, both from measurement and
from patient-level effects. For visual clarity, we omit intercept parameters.

population-level intercept, 𝑢TL
0𝑖 is the patient-level intercept, and 𝑡TL𝑖 𝑗 is the time after treatment. We

use a log-normal likelihood to restrict the model to positive TL values:

log𝑦TL𝑖 𝑗 ∼ N(𝜂TL𝑖 𝑗 , 𝜎TL
𝜖 ) (2)

3.2 Progression-free survival sub-model
We model the time-to-disease progression data using a log-logistic survival model, parameterized
as an accelerated failure time model. The probability of having observed a disease progression time
𝑇𝑖 for patient 𝑖 for the log-logistic model is given by

LPFS
obs (𝑇𝑖 ) =

𝛼𝑖

𝑇𝑖

(
𝑇𝑖

𝜎PFS
𝑖

)𝛼𝑖 (
1 +

(
𝑇𝑖

𝜎PFS
𝑖

)𝛼𝑖 )−2
(3)

where 𝜎PFS
𝑖 = exp

(
𝛾PFSTL 𝛿TL𝑖 + 𝒛PFS𝑖 · 𝒖PFS𝑖

)
and 𝛼𝑖 = exp

(
𝒙𝛼
𝑖
· 𝜷𝛼

)
are the scale and shape parameter,

respectively, of the log-logistic model. The parameter 𝛾PFSTL determines how a change in TL maps to
a probability of the patient’s disease being classified as progressive. 𝒛PFS𝑖 is a vector of patient-level
survival predictors while 𝒖PFS𝑖 are the patient-level effects on survival. 𝒙𝛼

𝑖
is a vector of predictors

for survival curve shape, while 𝜷𝛼 are the population-level effects of the predictors on the survival
curve shape. In the context the survival analysis literature, the exponential of the patient-level
slope, exp𝑢, is occasionally referred to as frailty and allows for one to account for unobserved
sources of variation in survival times [Keiding et al. 1997; Lambert et al. 2004].
Fortunately, many patients have right-censored survival times. The likelihood for observed

survival times, 𝑇𝑖 , when considering right-censored data is given by the log-logistic survival
function,

LPFS
censored (𝑇𝑖 ) = 𝑆 (𝑇𝑖 ) =

(
1 +

(
𝑇𝑖

𝜎PFS
𝑖

)𝛼𝑖 )−1
(4)
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3.3 Patient-level effects
The patient-level effects, 𝒖𝑖 , represent unmeasured sources of variation in outcomes. In this sense,
they account for unknown confounders in the true data generating model. As described in the above
subsections, each patient has multiple patient-level effect parameters. To handle the additional
freedom this introduces into the model, we use an informative prior distributions over these effects.
In particular, we assume that the patient-level effects, have a multivariate normal distribution such
that

𝒖𝑖 ∼ N(0, Σ𝑢) (5)
where Σ𝑢 is the covariance matrix that represents latent associations between all patient-level
random effects, and

𝒖𝑖 = (𝑢TL
0𝑖 , 𝒖

TL
1𝑖 , 𝒖

PFS
𝑖 ) . (6)

In practice we decompose Σ𝑢 as
Σ𝑢 = 𝐷𝑢Ω𝑢 = 𝐷𝑢𝐿𝑢𝐿

𝑇
𝑢 (7)

where
𝐷𝑢 = Diag(𝜎2

𝑢TL
0
, 𝜎2

𝑢TL
1
, 𝜎2

𝑢PFS ) (8)

is the diagonal matrix of patient-level variance terms, Ω𝑢 is the patient-level correlation matrix,
and 𝐿𝑢 is the lower triangular Cholesky decomposition of the correlation matrix, Ω𝑢 .

4 PRACTICAL CONSIDERATIONS
An example Stan implementation of the survival sub-model is provided in the supplemental material.
We use a wide normal prior for effect size parameters (e.g., 𝜷TL, 𝜷𝛼 ) centered at 0. For noise scale
parameters (e.g., 𝝈𝑢 , 𝜎TL

𝜖 ), we follow [Gelman 2006] in using a weakly informative Half-Cauchy
prior distribution.

To code the patient feature vectors and build design matrices, we use patsy1, a Python package
for describing statistical models. Within the Stan code, we allow for any subset of population-level
predictors to be used as patient-level predictors by passing in a vector of binary indicators of the
same length as the feature vector. For choosing patient-level random effects, we start by assuming
𝒛𝑖 = 1 (i.e., that the patient-level noise is uncorrelated with patient-features), then we introduce
more patient-level predictors as warranted by significant improvements in the leave-one-out
cross-validation (LOO-CV) information criterion [Vehtari et al. 2017].

We sample from the posterior probability distribution of themodel using the No-U-TurnHamilton-
ian Monte Carlo implementation in Stan [Hoffman and Gelman 2014], and we use the CmdStanPy2

interface to call Stan from Python. For representing and storing the outputs of inferences with the
model, we use arviz3[Kumar et al. 2019], a Python package for exploratory analysis of Bayesian
models.

5 RESULTS
We condition the model as described in Section 3 on individual treatment outcomes for 362 patients
with high-grade gliomas from the Musella Foundation Virtual Trial Registry4. This is a self-selected
and self-reported observational dataset, and thus it represents a challenge for inferring causal
effects of treatments. To predict treatment response, we use biomarkers of patient age at diagnosis,
tumor type (one of glioblastoma multiforme (GBM), anaplastic astrocytoma, or oligodendroglioma),
1https://patsy.readthedocs.io/en/latest/index.html
2https://cmdstanpy.readthedocs.io/en/latest/index.html
3https://arviz-devs.github.io/arviz/index.html
4https://virtualtrials.com/brain/

https://patsy.readthedocs.io/en/latest/index.html
https://cmdstanpy.readthedocs.io/en/latest/index.html
https://arviz-devs.github.io/arviz/index.html
https://virtualtrials.com/brain/
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Fig. 2. Left panel: Posterior predictive check for survival times. Note that the posterior predictive survival times
have been right-censored such that for patients with censored survival times, 𝑇𝑖,obs = min(𝑇𝑖 ,𝑇𝑖,𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 ).
While the model recovers the skewed distribution of log(𝑇 ), it under-predicts the shortest survival times.
Right panels: Posterior (orange histograms) and prior (blue histograms) distributions for the effect size (as log
accelerated failure rate) of different biomarkers and treatments. The effects (top to bottom, left to right) are
for indicators of age > 58 years, age < 35 years, disease classified as glioblastoma, disease was classified as
oligodendroglima, treated with temozolomide, treated with bevicizumab, treated with lomustine, treated
with a combination of temozolomide and lomustine, and treated with a combination of temozolomide and
bevacizumab. We see strong negative effects on survival of old age and GBM, while we see strong positive
effects on survival from oligodendroglioma, temozolomide and lomustine.. There is some evidence for a
positive effect from the interaction of bevacizumab and temozolomide.

and whether or not the tumor was resectable (i.e., able to be removed via surgery). We investi-
gate 14 different treatments contained in the database. Many of these treatments are cytotoxic
chemotherapies, though some of these treatments are intended as adjuvant therapies that are used
to supplement other treatments. For the cases of combination therapies, we introduce pairwise
interaction terms in the treatment predictors, 𝒙tx.

As a test of the feasibility of extrapolating with this model, we initially restrict our inference to
the survival data, then use the inferred posterior distributions to predict the tumor load trajectories.
To do this, we set 𝛾PFSTL = 1, 𝒛TL1,𝑖 = 0, and 𝑧PFS𝑖 = 1. The patient-level random effects in the model
thus represent the combined (unobserved) confounders on both tumor load and progression-free
survival.

Figure 2a compares the distribution of median posterior predictive survival times with that of the
observed survival times. To facilitate the comparison, we right-censor any posterior predicted times
associated to patients with censored survival times, such that 𝑇𝑖,obs = min(𝑇𝑖 ,𝑇𝑖,censored). Figure 2b
shows how the population-level (i.e., explained by the measured covariates) accelerated failure rate
parameter distributions change after conditioning on the data.
By examining the distribution of patient-level effects split on patient covariate groups, we can

look for clues that point toward unmeasured sources of variation in patient outcomes. For each
treatment, we compute the posterior median patient-level effect size distribution for the subset
of patients who were exposed to that treatment. We compute the 𝑝-value from the Shapiro-Wilk
normality test, and find the lowest 𝑝-value (4 × 10−5) for irinotecan, whose distribution of patient-
level effects (along with those of other treatments) is shown in Figure 3a. The cluster of large
patient-level effects in this treatment (as well as in bevacizumab) suggests that there may be
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Fig. 3. Left panel: Patient-level effects (the set of {𝑢𝑖 } from Equation 6, as log accelerated failure rates)
across different subsets of patients based on treatment received. The treatments (top to bottom in legend, in
order of most normal to least normal following the Shapiro-Wilks test 𝑝-value) are lomustine, temozolomide,
bevacizumab, and irinotecan.We see that patient-level effects distributions of the irinotecan- and bevacizumab-
selected patients have notable clusters of with larger effect sizes (associated to longer survival times). Right
panel: Tumor size over time for four patients from the Musella Virtual Trial database, along with the posterior
predictive distribution for TL as conditioned on the survival data. The green circles show the measured tumor
sizes while the orange line shows the median posterior predictive TL. The shaded orange region show the
16th-84th percentile Bayesian credible interval. The vertical dashed line in the lower left panel shows the time
of disease progression. We see that the model extrapolation capture the overall trends in the TL longitudinal
data.

subgroups of patients who would benefit more from these treatments than the population as a
whole. Of course, verifying that this is indeed a causal effect of the treatment is difficult to do
outside of a randomized controlled trial.

Finally, we can use the model, conditioned on only the survival data, to predict what the longitu-
dinal trajectories of tumor size should look like. Figure 3b shows these predictions for four patients
with longitudinal measurements of tumor sizes. To make these predictions, we assume 𝜎2

𝑢TL = 0,
and 𝜎TL

𝜖 = 1, but we emphasize that these predicted TL trajectories are extrapolations of the model
as conditioned on the survival data, not fits to the TL data themselves.

6 CONCLUSIONS AND FUTUREWORK
In this submission, we have demonstrated the application of a Bayesian multilevel model for cancer
patient treatment outcomes. Further development of the model will focus on modeling multiple
types of longitudinal patient outcomes (e.g., patient functional performance scores and other proxies
for tumor load) and rates of serious adverse treatment effects. We are exploring the application of
the model to clinical trial results, which will help ensure the robustness of any causal inferences
made with the model.
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